SOLUTION

Ex 11.1: 2, 3, 5, 8, 13
Ex 11.2: 1, 2, 3, 9, 15
Ex 11.3: 3, 4, 5, 20, 23
Ex 11.4: 2, 3, 13, 14, 26
Ex 11.5: 1, 3, 4, 6, 19
Ex 11.6: 1, 2, 5, 6, 13

Ex 11.1: (2)

a) $\{b, e\},\{e, f\},\{f, g\},\{g, e\},\{e, b\},\{b, c\},\{c, d\}$
b) $\{b, e\},\{e, f\},\{f, g\},\{g, e\},\{e, d\}$
c) $\{b, e\},\{e, d\}$
d) $\{b, e\},\{e, f\},\{f, g\},\{g, e\},\{e, b\}$
e) $\{b, e\},\{e, f\},\{f, g\},\{g, e\},\{e, d\},\{d, c\},\{c, b\}$
f) $\{b, a\},\{a, c\},\{c, b\}$

Ex 11.1: (3)

- 6

Ex 11.1: (5)

- Each path from a to h must include the edge $\{b, g\}$. There are three paths (in G) from a to b and three paths (in G) from g to h. Consequently, there are nine paths from a to h in G.
- There is only one path of length 3 , two of length 4 , three of length 5 , two of length 6 , and on of length 7 .

Ex 11.1: (8)

- The smallest number of guards needed is 3 - e.g., at vertices a, g, i.

Ex 11.1: (13)

- This relation is reflexive, symmetric and transitive, so it is an equivalence relation. The partition of V induced by R yields the (connected) components of G.

Ex 11.2: (1)

a) Three:
(1) $\{b, a\},\{a, c\},\{c, d\},\{d, a\}$
(2) $\{f, c\},\{c, a\},\{a, d\},\{d, c\}$
(3) $\{i, d\},\{d, c\},\{c, a\},\{a, d\}$
b) $\quad G_{1}$ is the subgraph induced by $U=\{a, b, d, f, g, h, i, j\}$. $G_{1}=G-\{c\}$.
c) $\quad G_{2}$ is the subgraph induced by $W=\{b, c, d, f, g, i, j\}$. $G_{2}=G-\{a, h\}$.
d) Fig.(1).
e) Fig.(2).

Ex 11.2: (2)

a) G_{1} is not an induced subgraph of G if there exists an edge $\{a, b\}$ in E such that $a, b \in V$, but $\{a, b\} \notin E_{1}$.
b) Let $e=\{a, d\}$. Then $G-e$ is a subgraph of G but it is not an induced subgraph.

Ex 11.2: (3)

a) There are $2^{9}=512$ spanning subgraphs.
b) Four of the spanning subgraph in part (a) are connected.
c) 2^{6}

Ex 11.2: (9)

a) Each graph has four vertices that are incident with three edges. In the second graph these vertices (w, x, y, z) form a cycle. This is not so for the corresponding vertices (a, b, g, h) in the first graph. Hence the graphs are not isomorphic.
b) In the first graph the vertex d is incident with four edges, No vertex in the second graph has this property, so the graphs are not isomorphic.

Ex 11.2: (15)

a) Here f must also maintain directions. So if $(a, b) \in \mathrm{E}_{1}$, then $(f(a), f(b)) \in E_{2}$.
b) They are not isomorphic. Consider vertex a in the first graph. It is incident to one vertex and incident from two other vertices. No vertex in the other graph has this property.

Ex 11.3: (3)

- Since $38=2|E|=\sum_{v \in V} \operatorname{deg}(v) \geq 4|V|$, the largest possible value for $|V|$ is 9 . We can have (i) seven vertices of degree 4 and two of degree 5; or (ii) eight vertices of degree 4 and one of degree 6. The graph in part (a) of the figure is an example for case (i); an example for case (ii) is provided in part (b) of the figure.

Ex 11.3: (4)

a) We must note here that G need not be connected. Up to isomorphism G is either a cycle on six vertices or (a disjoint union of) two cycles, each on three vertices.
b) Here G is either a cycle on seven vertices or (a disjoint union of) two cycles - one on three vertices and the other on four.
c) For such a graph $G_{1}, \overline{G_{1}}$ is one of the graphs in part (a). Hence there are two such graphs G_{1}.
d) Here $\overline{G_{1}}$ is one of the graphs in part (b). There are two such graphs G_{1} (up to isomorphism).
e) Let $G_{1}=\left(V_{1}, E_{1}\right)$ be a loop-free undirected $(n-3)$-regular graph with $|V|=n$. Up to isomorphism the number of such graphs G_{1} is the number of partitions of n into summands that exceed 2.

Ex 11.3: (5)

a) $\left|V_{1}\right|=8=\left|V_{2}\right| ;\left|E_{1}\right|=14=\left|E_{2}\right|$.
b) For V_{1} we find that $\operatorname{deg}(a)=3, \operatorname{deg}(b)=4, \operatorname{deg}(d)=3$, $\operatorname{deg}(e)=3, \operatorname{deg}(f)=4, \operatorname{deg}(g)=4$, and $\operatorname{deg}(h)=3$. For V_{2} we have $\operatorname{deg}(s)=3, \operatorname{deg}(t)=4, \operatorname{deg}(u)=4, \operatorname{deg}(v)=3, \operatorname{deg}(w)=$ $4, \operatorname{deg}(x)=3, \operatorname{deg}(y)=3$, and $\operatorname{deg}(z)=4$. Hence each of the two graphs has four vertices of degree 3 and four of degree 4.
c) Despite the results in parts (a) and (b) the graphs G_{1} and G_{2} are not isomorphic.
In the graph G_{2} the four vertices of degree 4 - namely, t, u, w, and $z-$ are on a cycle of length 4 . For the graph G_{1} the vertices b, c, f, and $g-$ each of degree 4 - do not lie on a cycle of length 4.
A second way to observe that G_{1} and G_{2} are not isomorphic is to consider once again the vertices of degree 4 in each graph. In G_{1} these vertices induce a disconnected subgraph consisting of the two edges $\{b, c\}$ and $\{f, g\}$. The four vertices of degree 4 in graph G_{2} induce a connected subgraph that has five edges - every possible edge except $\{u, z\}$.

Ex 11.3: (20)

a) $a \rightarrow b \rightarrow c \rightarrow g \rightarrow k \rightarrow j \rightarrow g \rightarrow b \rightarrow f \rightarrow j \rightarrow i \rightarrow f \rightarrow$ $e \rightarrow i \rightarrow h \rightarrow d \rightarrow e \rightarrow b \rightarrow d \rightarrow a$.
b) $d \rightarrow a \rightarrow b \rightarrow d \rightarrow g \rightarrow i \rightarrow e \rightarrow f \rightarrow i \rightarrow j \rightarrow f \rightarrow b \rightarrow c \rightarrow$ $g \rightarrow k \rightarrow j \rightarrow g \rightarrow b \rightarrow e$.

Ex 11.3: (23)

- Yes. Model the situation with a graph where there is a vertex for each room and the surrounding corridor. Draw an edge between two vertices if there is a door common to both rooms, or a room and the surrounding corridor. The resulting multigraph is connected with every vertex of even degree.

Ex 11.4: (2)

- From the symmetry in these graphs the following demonstrate the situations we must consider K_{5} :

$$
K_{3,3}:
$$

Ex 11.4: (3)

a) Graph Number of vertices Number of edges

$$
\begin{array}{ccc}
K_{4,7} & 11 & 28 \\
K_{7,11} & 18 & 77 \\
K_{m, n} & m+n & m n
\end{array}
$$

b) $m=6$

Ex 11.4: (13)

a) $a:\{1,2\}, f:\{4,5\}$, b: $\{3,4\}, g:\{2,5\}$, c: $\{1,5\}, h:\{2,3\}$, $d:\{2,4\}, i:\{1,3\}$, $e:\{3,5\}, j:\{1,4\}$.

b) G is (isomorphic to) the Petersen graph. (See Fig. 11.52(a)).

Ex 11.4: (14)

- Graph (1) shows that the first graph contains a subgraph homeomorphic to $K_{3,3}$, so it is not planar. The second graph is planar and isomorphic to the second graph of the exercise. The third graph provides a subgraph homeomorphic to $K_{3,3}$ so the third graph given here is not planar. Graph (6) is not planar because it contains a subgraph homeomorphic to K_{5}.

Ex 11.4: (26)

a) The correspondence $a \rightarrow v, b \rightarrow w, c \rightarrow y, d \rightarrow z, e \rightarrow x$ provides an isomorphism.
b)
(1)

c) In the first graph in part (b) vertex c^{\prime} had degree 5 . Since no vertex had degree 5 in the second graph, the two graphs cannot be isomorphic.
d)

e) $\quad\left\{\left\{a^{\prime}, c^{\prime}\right\},\left\{c^{\prime}, b^{\prime}\right\},\left\{b^{\prime}, a^{\prime}\right\}\right\} ;\{\{p, r\},\{r, t\},\{r, t\},\{r, s\}\}$.

Ex 11.5: (1)

(6)

(b)

(c)

(d)

Ex 11.5: (3.a~3.d)

a) Hamilton cycle: $a \rightarrow g \rightarrow k \rightarrow i \rightarrow h \rightarrow b \rightarrow c \rightarrow d \rightarrow j \rightarrow$ $f \rightarrow e \rightarrow a$
b) Hamilton cycle: $a \rightarrow d \rightarrow b \rightarrow e \rightarrow g \rightarrow j \rightarrow i \rightarrow f \rightarrow h \rightarrow$ $c \rightarrow a$
c) Hamilton cycle: $a \rightarrow h \rightarrow e \rightarrow f \rightarrow g \rightarrow i \rightarrow d \rightarrow c \rightarrow b \rightarrow a$
d) The edges $\{a, c\},\{c, d\},\{d, b\},\{b, e\},\{e, f\},\{f, g\}$ provide a Hamilton path for the given graph. However, there is no Hamilton cycle, for such a cycle would have to include the edges $\{b, d\},\{b, e\},\{a, c\},\{a, e\},\{g, f\}$, and $\{g, e\}$ - and, consequently, the vertex e will have degree greater than 2.

Ex 11.5: (3.e, 3.f)

e) The path $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow j \rightarrow i \rightarrow h \rightarrow g \rightarrow f \rightarrow k \rightarrow l \rightarrow m \rightarrow$ $n \rightarrow o$ is one possible Hamilton path for this graph. Another possibility is the path $a \rightarrow b \rightarrow c \rightarrow d \rightarrow i \rightarrow h \rightarrow g \rightarrow f \rightarrow k \rightarrow l \rightarrow m \rightarrow n \rightarrow o \rightarrow$ $j \rightarrow e$. However, there is no Hamilton cycle. For if we try to construct a Hamilton cycle we must include the edges
$\{a, b\},\{a, f\},\{f, k\},\{k, l\},\{d, e\},\{e, j\},\{j, o\}$ and $\{n, o\}$. This then forces us to eliminate the edges $\{f, g\}$ and $\{i, j\}$ from further consideration. Now consider the vertex i, . If we use edges $\{d, i\}$ and $\{i, n\}$, then we have a cycle on the vertices d, e, j, o, n and i - and we cannot get a Hamilton cycle for the given graph. Hence we must use only one of the edges $\{d, i\}$ and $\{i, n\}$. Because of the symmetry in this graph let us select edge $\{d, i\}$ - and then edge $\{h, i\}$ so that vertex i will have degree 2 in the Hamilton cycle we are trying to construct. Since edges $\{d, i\}$ and $\{d, e\}$ are now being used, we eliminate edge $\{c, d\}$ and this then forces us to include edges $\{b, c\}$ and $\{e, h\}$ in our construction. Also we must include the edge $\{m, n\}$ since we eliminated edge $\{i, n\}$ from consideration. Next we eliminate edge $\{l, g\}$. But now we have eliminated the four edges $\{b, g\},\{f, g\},\{h, g\}$ and $\{l, g\}$ and g is consequently isolated.
f) For this graph we find the Hamilton cycle $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow j \rightarrow$ $i \rightarrow h \rightarrow g \rightarrow l \rightarrow m \rightarrow n \rightarrow o \rightarrow t \rightarrow s \rightarrow r \rightarrow q \rightarrow p \rightarrow k \rightarrow f \rightarrow a$.

Ex 11.5: (4)

a) Consider the graph as shown in Fig.11.52(a). We demonstrate one case. Start at vertex a and consider the partial path $a \rightarrow f \rightarrow i \rightarrow d$. These choices require the removal of edge $\{\mathrm{f}, \mathrm{h}\}$ and $\{\mathrm{g}, \mathrm{i}\}$ from further consideration since each vertex of the graph will be incident with exactly two edges in the Hamilton cycle. At vertex d we can go to either vertex c or vertex e. (i) If we go to vertex c we eliminate edge $\{\mathrm{e}, \mathrm{d}\}$ from consideration, but we must now incude edges $\{e, j\}$ and $\{e, a\}$, and this forces the elimination of edge $\{a, b\}$. Now we must consider vertex b , for by eliminating edge $\{\mathrm{a}, \mathrm{b}\}$. We are now required to include edges $\{b, g\}$ and $\{b, c\}$ in the cycle. This forces us to remove edge $\{c, h\}$ from further consideration. But we have now removed edges $\{\mathrm{f}, \mathrm{h}\}$ and $\{\mathrm{c}, \mathrm{h}\}$ and there is only one other edge that is incident with h, so no Hamilton cycle can be obtained. (ii) Selecting vertex e after d, we remove edge $\{\mathrm{d}, \mathrm{c}\}$ and include $\{\mathrm{c}, \mathrm{h}\}$ and $\{\mathrm{b}, \mathrm{c}\}$. Having removed $\{\mathrm{g}, \mathrm{i}\}$ we must include $\{\mathrm{g}, \mathrm{b}\}$ and $\{g, j\}$. This forces the elimination of $\{a, b\}$, the inclusion of $\{a, e\}$ (and the elimination of $\{\mathrm{e}, \mathrm{j}\}$). We now have a cycle containing a, f, i, d, e, hence this method has also failed.
However, this graph does have a Hamilton path: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow j \rightarrow$ $h \rightarrow f \rightarrow i \rightarrow g$.
b) For example, remove vertex j and the edges $\{\mathrm{e}, \mathrm{j}\},\{\mathrm{g}, \mathrm{j}\},\{\mathrm{h}, \mathrm{j}\}$. Then $e \rightarrow a \rightarrow f \rightarrow h \rightarrow c \rightarrow b \rightarrow g \rightarrow i \rightarrow d \rightarrow e$ provides a Hamilton cycle for this subgraph.

Ex 11.5: (6)

- Let the vertices on the cycle (rim) of W_{n} be consecutively denoted by $v_{1}, v_{2}, \ldots, v_{n}$, and let v_{n+1} denote the additional (central) vertex of W_{n}. Then the following cycles provide n Hamilton cycles for the wheel graph W_{n}.
(1) $\quad v_{1} \rightarrow v_{n+1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{n} \rightarrow v_{1}$;
(2) $\quad v_{1} \rightarrow v_{2} \rightarrow v_{n+1} \rightarrow v_{3} \rightarrow v_{4} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{n} \rightarrow v_{1}$;
(3) $\quad v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{n+1} \rightarrow v_{4} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{n} \rightarrow v_{1}$;
(n-1) $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{n+1} \rightarrow v_{n} \rightarrow v_{1}$;
(n) $\quad v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{n} \rightarrow v_{n+1} \rightarrow v_{1}$;

Ex 11.5: (19)

- This follows from Theorem 11.9, since for all (nonadjacnet) $x, y \in V, \operatorname{deg}(x)+\operatorname{deg}(y)=12>11=|V|$.

Ex 11.6: (1)

- Draw a vertex for each species of fish. If two species x, y must be kept in separate aquaria, draw the edge $\{x, y\}$. The smallest number of aquaria needed is then the chromatic number if the resulting graph.

Ex 11.6: (2)

- Draw a vertex for each committee. If someone serves on two committees c_{i}, c_{j} draw the edge joining the vertices for c_{i} and c_{j}. Then the least number of meeting times is the chromatic number of the graph.

Ex 11.6: (5)

a) $\quad P(G, \lambda)=\lambda(\lambda-1)^{3}$.
b) For $G=K_{1, n}$ we find that $P(G, \lambda)=\lambda(\lambda-1)^{n} \cdot \chi\left(K_{1, n}\right)=2$.

Ex 11.6: (6)

a) (i) Here we have λ choices for vertex a, 1 choice for vertex b (the same choice as that for vertex a), and $\lambda-1$ choices for each of vertices x, y, z. Consequently, there are $\lambda(\lambda-1)^{3}$ proper colorings of $K_{2,3}$ where vertices a and b are colored the same.
(ii) Now we have λ choices for vertex a, $\lambda-1$ choices for vertex b, and $\lambda-2$ choices for each of the vertices x, y, and z. And here there are $\lambda(\lambda-1)(\lambda-2)^{3}$ proper colorings.
b) Since the two cases in part (a) are exhaustive and mutually exclusive, the chromatic polynomial for $K_{2,3}$ is
$\lambda(\lambda-1)^{3}+\lambda(\lambda-1)(\lambda-2)^{3}$
$=\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right) . \chi\left(K_{2,3}\right)=2$.
c) $P\left(K_{2, n}, \lambda\right)=\lambda(\lambda-1)^{n}+\lambda(\lambda-1)(\lambda-2)^{n} \cdot \chi\left(K_{2, n}\right)=2$.

Ex 11.6: (13)

a) $|V|=2 n ;|E|=\left(\frac{1}{2}\right) \sum_{v \in V} \operatorname{deg}(v)=\left(\frac{1}{2}\right)[4(2)+(2 n-4)(3)]=$ $\left(\frac{1}{2}\right)[8+6 n-12]=3 n-2, n \geq 1$.
b) For $n=1$, we find that $G=K_{2}$ and $P(G, \lambda)=\lambda(\lambda-1)=$ $\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{1-1}$ so the result is true in this first case. For $n=2$, we have $G=C_{4}$, the cycle of length 4 , and here $P(G, \lambda)=$ $\lambda(\lambda-1)^{3}-\lambda(\lambda-1)(\lambda-2)=\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{2-1}$. So the result follows for $n=2$. Assuming the result true for an arbitrary (but fixed) $n \geq 1$, consider the situation for $n+1$. Write $G=G_{1} \cup G_{2}$, where G_{1} is C_{4} and G_{2} is the ladder graph for n rungs. Then $G_{1} \cap G_{2}=K_{2}$, so from Theorem 11.14 we have $P(G, \lambda)=$ $P\left(G_{1}, \lambda\right) \cdot \frac{P\left(G_{2}, \lambda\right)}{P\left(K_{2}, \lambda\right)}=\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{n}$. Consequently, the result is true for all $n \geq 1$, by the Principle of Mathematical Induction.

