
SOLUTION 
Ex 11.1: 2, 3, 5, 8, 13 
Ex 11.2: 1, 2, 3, 9, 15 
Ex 11.3: 3, 4, 5, 20, 23 
Ex 11.4: 2, 3, 13, 14, 26 
Ex 11.5: 1, 3, 4, 6, 19 
Ex 11.6: 1, 2, 5, 6, 13 



Ex 11.1: (2) 
a)  {𝑏, 𝑒}, {𝑒,𝑓}, {𝑓,𝑔}, {𝑔, 𝑒}, {𝑒, 𝑏}, {𝑏, 𝑐}, {𝑐,𝑑} 
b)  {𝑏, 𝑒}, {𝑒,𝑓}, {𝑓,𝑔}, {𝑔, 𝑒}, {𝑒,𝑑} 
c)  {𝑏, 𝑒}, {𝑒,𝑑} 
d)  {𝑏, 𝑒}, {𝑒,𝑓}, {𝑓,𝑔}, {𝑔, 𝑒}, {𝑒, 𝑏} 
e)  {𝑏, 𝑒}, {𝑒,𝑓}, {𝑓,𝑔}, {𝑔, 𝑒}, {𝑒,𝑑}, {𝑑, 𝑐}, {𝑐, 𝑏} 
f)  {𝑏,𝑎}, {𝑎, 𝑐}, {𝑐, 𝑏} 

 
 
 



Ex 11.1: (3) 
• 6 



Ex 11.1: (5) 
• Each path from 𝑎 to ℎ must include the edge {𝑏,𝑔}. There are 

three paths (in 𝐺) from 𝑎 to 𝑏 and three paths (in 𝐺) from 𝑔 to ℎ. 
Consequently, there are nine paths from 𝑎 to ℎ in 𝐺. 

• There is only one path of length 3, two of length 4, three of 
length 5, two of length 6, and on of length 7. 



Ex 11.1: (8) 
• The smallest number of guards needed is 3 – e.g., at vertices 𝑎, 
𝑔, 𝑖. 



Ex 11.1: (13) 
• This relation is reflexive, symmetric and transitive, so it is an 

equivalence relation. The partition of 𝑉 induced by 𝑅 yields the 
(connected) components of 𝐺. 



Ex 11.2: (1) 
a) Three: 

(1) 𝑏,𝑎 , 𝑎, 𝑐 , 𝑐,𝑑 , 𝑑,𝑎  
(2) 𝑓, 𝑐 , 𝑐,𝑎 , 𝑎,𝑑 , 𝑑, 𝑐  
(3) {𝑖,𝑑}, {𝑑, 𝑐}, {𝑐,𝑎}, {𝑎,𝑑} 

b)  𝐺1 is the subgraph induced by 𝑈 = 𝑎, 𝑏,𝑑,𝑓,𝑔,ℎ, 𝑖, 𝑗 .  
𝐺1 = 𝐺 − 𝑐  . 

c)  𝐺2 is the subgraph induced by 𝑊 = 𝑏, 𝑐,𝑑,𝑓,𝑔, 𝑖, 𝑗 .  
𝐺2 = 𝐺 − 𝑎,ℎ . 

d) Fig.(1). 
e) Fig.(2). 



Ex 11.2: (2) 
a) 𝐺1 is not an induced subgraph of 𝐺 if there exists an edge 

𝑎, 𝑏  in 𝐸 such that 𝑎, 𝑏 ∈ 𝑉, but {𝑎, 𝑏} ∉ 𝐸1. 
b) Let 𝑒 = {𝑎,𝑑}. Then 𝐺 − 𝑒 is a subgraph of 𝐺 but it is not an 

induced subgraph. 



Ex 11.2: (3) 
a) There are 29 = 512 spanning subgraphs. 
b) Four of the spanning subgraph in part (a) are connected. 
c)  26 



Ex 11.2: (9) 
a) Each graph has four vertices that are incident with three edges. 

In the second graph these vertices (𝑤, 𝑥,𝑦, 𝑧) form a cycle. 
This is not so for the corresponding vertices (𝑎, 𝑏,𝑔,ℎ) in the 
first graph. Hence the graphs are not isomorphic. 

b) In the first graph the vertex d is incident with four edges, No 
vertex in the second graph has this property, so the graphs are 
not isomorphic. 



Ex 11.2: (15) 
a) Here 𝑓 must also maintain directions. So if 𝑎, 𝑏 ∈ E1, then 

𝑓 𝑎 ,𝑓 𝑏 ∈ 𝐸2.  
b) They are not isomorphic. Consider vertex 𝑎 in the first graph. 

It is incident to one vertex and incident from two other 
vertices. No vertex in the other graph has this property. 



Ex 11.3: (3) 
• Since 38 = 2 𝐸 = ∑ deg 𝑣𝑣∈𝑉 ≥ 4 𝑉 , the largest possible 

value for 𝑉  is 9. We can have (i) seven vertices of degree 4 
and two of degree 5; or (ii) eight vertices of degree 4 and one of 
degree 6. The graph in part (a) of the figure is an example for 
case (i); an example for case (ii) is provided in part (b) of the 
figure. 



Ex 11.3: (4) 
a) We must note here that 𝐺 need not be connected. Up to 

isomorphism 𝐺 is either a cycle on six vertices or (a disjoint 
union of) two cycles, each on three vertices. 

b) Here 𝐺 is either a cycle on seven vertices or (a disjoint union 
of) two cycles – one on three vertices and the other on four. 

c) For such a graph 𝐺1, 𝐺1 is one of the graphs in part (a). Hence 
there are two such graphs 𝐺1. 

d) Here 𝐺1 is one of the graphs in part (b). There are two such 
graphs 𝐺1(up to isomorphism). 

e) Let 𝐺1 = 𝑉1,𝐸1 be a loop-free undirected (𝑛 − 3)-regular 
graph with |𝑉| = 𝑛. Up to isomorphism the number of such 
graphs 𝐺1 is the number of partitions of n into summands that 
exceed 2. 



Ex 11.3: (5) 
a) 𝑉1 = 8 = 𝑉2 ;  𝐸1 = 14 = 𝐸2 . 
b) For 𝑉1 we find that deg 𝑎 = 3, deg 𝑏 = 4, deg 𝑑 = 3, 

deg 𝑒 = 3, deg 𝑓 = 4, deg 𝑔 = 4, and deg ℎ = 3. For 𝑉2 we 
have deg 𝑠 = 3, deg 𝑡 = 4, deg 𝑢 = 4, deg 𝑣 = 3, deg 𝑤 =
4, deg 𝑥 = 3, deg 𝑦 = 3, and deg 𝑧 = 4. Hence each of the 
two graphs has four vertices of degree 3 and four of degree 4. 

c) Despite the results in parts (a) and (b) the graphs 𝐺1 and 𝐺2 are not 
isomorphic. 

In the graph 𝐺2 the four vertices of degree 4 – namely, 𝑡,𝑢,𝑤, and 𝑧 – 
are on a cycle of length 4. For the graph 𝐺1 the vertices 𝑏, 𝑐, 𝑓, and 𝑔 – 
each of degree 4 – do not lie on a cycle of length 4. 
A second way to observe that 𝐺1 and 𝐺2 are not isomorphic is to 
consider once again the vertices of degree 4 in each graph. In 𝐺1 these 
vertices induce a disconnected subgraph consisting of the two edges 
𝑏, 𝑐 and 𝑓,𝑔 . The four vertices of degree 4 in graph 𝐺2 induce a 

connected subgraph that has five edges – every possible edge except 
𝑢, 𝑧 . 



Ex 11.3: (20) 
a)  𝑎 → 𝑏 → 𝑐 → 𝑔 → 𝑘 → 𝑗 → 𝑔 → 𝑏 → 𝑓 → 𝑗 → 𝑖 → 𝑓 →

𝑒 → 𝑖 → ℎ → 𝑑 → 𝑒 → 𝑏 → 𝑑 → 𝑎. 
b)  𝑑 → 𝑎 → 𝑏 → 𝑑 → 𝑔 → 𝑖 → 𝑒 → 𝑓 → 𝑖 → 𝑗 → 𝑓 → 𝑏 → 𝑐 →

𝑔 → 𝑘 → 𝑗 → 𝑔 → 𝑏 → 𝑒. 
 

 



Ex 11.3: (23) 
• Yes. Model the situation with a graph where there is a vertex for 

each room and the surrounding corridor. Draw an edge between 
two vertices if there is a door common to both rooms, or a room 
and the surrounding corridor. The resulting multigraph is 
connected with every vertex of even degree. 



Ex 11.4: (2) 
• From the symmetry in these graphs the following demonstrate 

the situations we must consider 
𝐾5:     𝐾3,3: 



Ex 11.4: (3) 
a)   

 
 
 
 

b)  𝑚 = 6 

Graph Number of vertices Number of edges 
𝐾4,7 11 28 
𝐾7,11 18 77 
𝐾𝑚,𝑛 𝑚 + 𝑛 𝑚𝑛 



Ex 11.4: (13) 
a)   

 
 
 
 
 

b) G is (isomorphic to) the Petersen graph. (See Fig. 11.52(a)). 

𝑎: {1,2}, 𝑓: {4,5}, 
𝑏: {3,4}, 𝑔: {2,5}, 
𝑐:  {1,5}, ℎ: {2,3}, 
𝑑: {2,4}, 𝑖: {1,3}, 
𝑒: {3,5}, 𝑗: {1,4}. 



Ex 11.4: (14) 
• Graph (1) shows that the first graph contains a subgraph 

homeomorphic to 𝐾3,3, so it is not planar. The second graph is 
planar and isomorphic to the second graph of the exercise. The 
third graph provides a subgraph homeomorphic to 𝐾3,3 so the 
third graph given here is not planar. Graph (6) is not planar 
because it contains a subgraph homeomorphic to 𝐾5. 



Ex 11.4: (26) 
a) The correspondence 𝑎 → 𝑣, 𝑏 → 𝑤, 𝑐 → 𝑦,𝑑 → 𝑧, 𝑒 → 𝑥 provides 

an isomorphism. 
b)   

 
 
 

c) In the first graph in part (b) vertex 𝑐′ had degree 5. Since no vertex 
had degree 5 in the second graph, the two graphs cannot be 
isomorphic. 

d)   
 
 
 

e)  {{𝑎′, 𝑐′}, {𝑐′, 𝑏′}, {𝑏′,𝑎′}}; {{𝑝, 𝑟}, {𝑟, 𝑡}, {𝑟, 𝑡}, {𝑟, 𝑠}}. 



Ex 11.5: (1) 
 



Ex 11.5: (3.a~3.d) 
a) Hamilton cycle: 𝑎 → 𝑔 → 𝑘 → 𝑖 → ℎ → 𝑏 → 𝑐 → 𝑑 → 𝑗 →

𝑓 → 𝑒 → 𝑎 
b) Hamilton cycle: 𝑎 → 𝑑 → 𝑏 → 𝑒 → 𝑔 → 𝑗 → 𝑖 → 𝑓 → ℎ →

𝑐 → 𝑎 
c) Hamilton cycle: 𝑎 → ℎ → 𝑒 → 𝑓 → 𝑔 → 𝑖 → 𝑑 → 𝑐 → 𝑏 → 𝑎 
d) The edges {𝑎, 𝑐}, {𝑐,𝑑}, {𝑑, 𝑏}, {𝑏, 𝑒}, {𝑒,𝑓}, {𝑓,𝑔} provide a 

Hamilton path for the given graph. However, there is no 
Hamilton cycle, for such a cycle would have to include the 
edges {𝑏,𝑑}, {𝑏, 𝑒}, {𝑎, 𝑐}, {𝑎, 𝑒}, {𝑔,𝑓}, and {𝑔, 𝑒} – and, 
consequently, the vertex 𝑒 will have degree greater than 2. 



Ex 11.5: (3.e, 3.f) 
e) The path 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑗 → 𝑖 → ℎ → 𝑔 → 𝑓 → 𝑘 → 𝑙 → 𝑚 →

𝑛 → 𝑜 is one possible Hamilton path for this graph. Another possibility is 
the path 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑖 → ℎ → 𝑔 → 𝑓 → 𝑘 → 𝑙 → 𝑚 → 𝑛 → 𝑜 →
𝑗 → 𝑒. However, there is no Hamilton cycle. For if we try to construct a 
Hamilton cycle we must include the edges 
{𝑎, 𝑏}, {𝑎, 𝑓}, {𝑓, 𝑘}, {𝑘, 𝑙}, {𝑑, 𝑒}, {𝑒, 𝑗}, {𝑗, 𝑜} and {𝑛, 𝑜}. This then forces us 
to eliminate the edges {𝑓,𝑔} and {𝑖, 𝑗} from further consideration . Now 
consider the vertex 𝑖,. If we use edges {𝑑, 𝑖} and {𝑖,𝑛}, then we have a 
cycle on the vertices 𝑑, 𝑒, 𝑗, 𝑜,𝑛 and 𝑖 – and we cannot get a Hamilton 
cycle for the given graph. Hence we must use only one of the edges 
{𝑑, 𝑖} and {𝑖,𝑛}. Because of the symmetry in this graph let us select edge 
{𝑑, 𝑖} – and then edge {ℎ, 𝑖} so that vertex 𝑖 will have degree 2 in the 
Hamilton cycle we are trying to construct. Since edges {𝑑, 𝑖} and {𝑑, 𝑒} are 
now being used, we eliminate edge {𝑐,𝑑} and this then forces us to 
include edges {𝑏, 𝑐} and {𝑒, ℎ} in our construction. Also we must include 
the edge {𝑚,𝑛} since we eliminated edge {𝑖,𝑛} from consideration. Next 
we eliminate edge {𝑙,𝑔}. But now we have eliminated the four edges 
{𝑏,𝑔}, {𝑓,𝑔}, {ℎ,𝑔} and {𝑙,𝑔} and 𝑔 is consequently isolated. 

f) For this graph we find the Hamilton cycle 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑗 →
𝑖 → ℎ → 𝑔 → 𝑙 → 𝑚 → 𝑛 → 𝑜 → 𝑡 → 𝑠 → 𝑟 → 𝑞 → 𝑝 → 𝑘 → 𝑓 → 𝑎. 



Ex 11.5: (4) 
a) Consider the graph as shown in Fig.11.52(a). We demonstrate one case. Start 

at vertex a and consider the partial path 𝑎 → 𝑓 → 𝑖 → 𝑑. These choices require 
the removal of edge {f,h} and {g,i} from further consideration since each 
vertex of the graph will be incident with exactly two edges in the Hamilton 
cycle. At vertex d we can go to either vertex c or vertex e. (i) If we go to 
vertex c we eliminate edge {e,d} from consideration, but we must now incude 
edges {e,j} and {e,a}, and this forces the elimination of edge {a,b}. Now we 
must consider vertex b, for by eliminating edge {a,b}. We are now required to 
include edges {b,g} and {b,c} in the cycle. This forces us to remove edge {c,h} 
from further consideration. But we have now removed edges {f,h} and {c,h} 
and there is only one other edge that is incident with h, so no Hamilton cycle 
can be obtained. (ii) Selecting vertex e after d, we remove edge {d,c} and 
include {c,h} and {b,c}. Having removed {g,i} we must include {g,b} and 
{g,j}. This forces the elimination of {a,b}, the inclusion of {a,e} (and the 
elimination of {e,j}). We now have a cycle containing 𝑎, 𝑓, 𝑖,𝑑, 𝑒, hence this 
method has also failed. 
However, this graph does have a Hamilton path: 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑗 →
ℎ → 𝑓 → 𝑖 → 𝑔. 

b) For example, remove vertex j and the edges {e,j}, {g,j}, {h,j}. Then 
𝑒 → 𝑎 → 𝑓 → ℎ → 𝑐 → 𝑏 → 𝑔 → 𝑖 → 𝑑 → 𝑒 provides a Hamilton cycle for 
this subgraph. 



Ex 11.5: (6) 
• Let the vertices on the cycle (rim) of 𝑊𝑛 be consecutively 

denoted by 𝑣1, 𝑣2, … , 𝑣𝑛, and let 𝑣𝑛+1 denote the additional 
(central) vertex of 𝑊𝑛. Then the following cycles provide 𝑛 
Hamilton cycles for the wheel graph 𝑊𝑛. 
(1)  𝑣1 → 𝑣𝑛+1→ 𝑣2→ 𝑣3→ 𝑣4→ ⋯ → 𝑣𝑛−1 → 𝑣𝑛→ 𝑣1; 
(2)  𝑣1 → 𝑣2→ 𝑣𝑛+1→ 𝑣3→ 𝑣4→ ⋯  → 𝑣𝑛−1→ 𝑣𝑛→ 𝑣1; 
(3)  𝑣1 → 𝑣2→ 𝑣3→ 𝑣𝑛+1→ 𝑣4→ ⋯  → 𝑣𝑛−1→ 𝑣𝑛→ 𝑣1; 
… 
(n-1)  𝑣1 → 𝑣2→ 𝑣3→ 𝑣4→ ⋯  → 𝑣𝑛−1→ 𝑣𝑛+1→ 𝑣𝑛→ 𝑣1; 
(n)  𝑣1 → 𝑣2→ 𝑣3→ 𝑣4→ ⋯  → 𝑣𝑛−1→ 𝑣𝑛→ 𝑣𝑛+1→ 𝑣1; 
 
 
 



Ex 11.5: (19) 
• This follows from Theorem 11.9, since for all (nonadjacnet) 
𝑥,𝑦 ∈ 𝑉, deg 𝑥 + deg 𝑦 = 12 > 11 = 𝑉 . 



Ex 11.6: (1) 
• Draw a vertex for each species of fish. If two species 𝑥,𝑦 must 

be kept in separate aquaria, draw the edge {𝑥,𝑦}. The smallest 
number of aquaria needed is then the chromatic number if the 
resulting graph. 



Ex 11.6: (2) 
• Draw a vertex for each committee. If someone serves on two 

committees 𝑐𝑖 , 𝑐𝑗  draw the edge joining the vertices for 𝑐𝑖  and 𝑐𝑗 . 
Then the least number of meeting times is the chromatic number 
of the graph. 



Ex 11.6: (5) 
a)  𝑃 𝐺, 𝜆 = 𝜆 𝜆 − 1 3. 
b) For 𝐺 = 𝐾1,𝑛 we find that 𝑃 𝐺, 𝜆 = 𝜆 𝜆 − 1 𝑛. 𝜒 𝐾1,𝑛 = 2. 



Ex 11.6: (6) 
a) (i) Here we have 𝜆 choices for vertex 𝑎, 1 choice for vertex 𝑏 

(the same choice as that for vertex 𝑎), and𝜆 − 1 choices for 
each of vertices 𝑥,𝑦, 𝑧. Consequently, there are 
𝜆 𝜆 − 1 3proper colorings of 𝐾2,3 where vertices 𝑎 and 𝑏 are 
colored the same. 
(ii) Now we have 𝜆 choices for vertex a, 𝜆 − 1 choices for 
vertex 𝑏, and 𝜆 − 2 choices for each of the vertices 𝑥,𝑦, and 𝑧. 
And here there are 𝜆 𝜆 − 1 𝜆 − 2 3 proper colorings. 

b) Since the two cases in part (a) are exhaustive and mutually 
exclusive, the chromatic polynomial for 𝐾2,3 is  
 𝜆 𝜆 − 1 3 + 𝜆 𝜆 − 1 𝜆 − 2 3 
= 𝜆 𝜆 − 1 𝜆3 − 5𝜆2 + 10𝜆 − 7 . 𝜒 𝐾2,3 = 2. 

c)  𝑃 𝐾2,𝑛, 𝜆 = 𝜆 𝜆 − 1 𝑛 + 𝜆 𝜆 − 1 𝜆 − 2 𝑛.𝜒 𝐾2,𝑛 = 2. 



Ex 11.6: (13) 
a)  𝑉 = 2𝑛;  𝐸 = 1

2
∑ deg 𝑣𝑣∈𝑉 = 1

2
4 2 + 2𝑛 − 4 3 =

1
2

8 + 6𝑛 − 12 = 3𝑛 − 2,𝑛 ≥ 1. 
b) For 𝑛 = 1, we find that 𝐺 = 𝐾2 and 𝑃 𝐺, 𝜆 = 𝜆 𝜆 − 1 =

𝜆 𝜆 − 1 𝜆2 − 3𝜆 + 3 1−1so the result is true in this first case. For 
𝑛 = 2, we have 𝐺 = 𝐶4, the cycle of length 4, and here 𝑃 𝐺, 𝜆 =
𝜆 𝜆 − 1 3 − 𝜆 𝜆 − 1 𝜆 − 2 = 𝜆 𝜆 − 1 𝜆2 − 3𝜆 + 3 2−1. So the 
result follows for 𝑛 = 2. Assuming the result true for an arbitrary 
(but fixed) 𝑛 ≥ 1, consider the situation for 𝑛 + 1. Write 
𝐺 = 𝐺1 ∪ 𝐺2, where 𝐺1 is 𝐶4 and 𝐺2 is the ladder graph for 𝑛 rungs. 
Then 𝐺1 ∩ 𝐺2 = 𝐾2, so from Theorem 11.14 we have 𝑃 𝐺, 𝜆 =
𝑃 𝐺1, 𝜆 ⋅ 𝑃 𝐺2,𝜆

𝑃 𝐾2,𝜆
= 𝜆 𝜆 − 1 𝜆2 − 3𝜆 + 3 𝑛. Consequently, the 

result is true for all 𝑛 ≥ 1, by the Principle of Mathematical 
Induction. 
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