Solution Week 1

Ex 1.1 \& 1.2: 15, 22, 28, 32, 33
Ex 1.3: 13, 16, 25, 29, 34
Ex 1.4: 7, 17, 24, 26, 28

Ex 1.1 \& 1.2: (15)

* Here we must place $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in the positions denoted by x : e $\underline{x} \operatorname{e} \underline{x} \operatorname{ex} \underline{x} \underline{x}$ e.
* By the rule of product, there are 4! ways to do this.

Ex 1.1 \& 1.2: (22)

* Case1: The leading digit is $5:(6!) /(2!)$
* Case2: The leading digit is $6:(6!) /(2!)^{2}$
* Case3: The leading digit is $7:(6!) /(2!)^{2}$
* In total there are
$[(6!) /(2!)][1+(1 / 2)+(1 / 2)]=720$ such position integers n.

Ex 1.1 \& 1.2: (28)

a) The for loops for i, j, k are executed $12,6,8$ times, respectively. The value of counter is $0+12 \mathrm{x} 1+6 \mathrm{x} 2+8 \mathrm{x} 3=48$.
b) By the rule of sum.

Ex 1.1 \& 1.2: (32)

a) For positive integers n, k where $n=3 k$, then $n!/(3!)^{k}$ is the number of ways to arrange the following n objects
$x_{1}, x_{1}, x_{1}, x_{2}, x_{2}, x_{2}, \ldots, x_{k}, x_{k}, x_{k}$.
Therefore, it must be an integer.
b) If n, k are positive integers with $n=m k$, then $n!/(m!)^{k}$ is an integer.

Ex 1.1 \& 1.2: (33)

a) With 2 choices per question. There are $2^{10}=1024$ ways.
b) With 3 choices per question. There are 3^{10} ways.

Ex 1.3: (13)

* The letters M,I,I,I,P,P,I can be arranged in [7!/(4!2!)] ways. Each arrangement provides 8 locations for placing the 4 S's in nonconsecutive ways.
* Four of S's locations from 8 possible locations can be selected in $\binom{8}{4}$ ways. Hence, total number of these arrangements is $\binom{8}{4}[7!/(4!2!)]$.

Ex 1.3: (16)

a) 97
b) -5
c) 12
d) 0
e) 3

Ex 1.3: (25)

a) $\binom{4}{1,1,2}=12$
b) $\binom{1,4,1,2}{(1,2}=12$
c) $\left(\begin{array}{l}4,1,2\end{array}\right)(2)(-1)(-1)^{2}=-24$
d) $\binom{4}{1,1,2}(-2)(3)^{2}=-216$
e) $\left(\frac{8}{8,2,1,2}\right)(2)^{3}(-1)^{2}(3)(-2)^{2}=161280$

Ex 1.3: (29)

$$
\begin{aligned}
* n\binom{m+n}{m} & \\
& =n \frac{(m+n)!}{m!n!} \\
& =\frac{(m+n)!}{m!(n-1)!} \\
& =(m+1) \frac{(m+n)!}{(m+1)(m!)(n-1)!} \\
& =(m+1)\binom{m+n}{m+1}
\end{aligned}
$$

Ex 1.3: (34)

a) procedure Select2 (i,j: positive integers)
begin
for $i:=1$ to 5 do for $j:=i+1$ to 6 do print (i,j)
end
b) procedure Select3 (i,j,k: positive integers)
begin
for $i:=1$ to 4 do for $j:=i+1$ to 5 do for $k:=j+1$ to 6 do print (i,j,k)
end

Ex 1.4: (7)

a) $\binom{4+32-1}{32}=\binom{35}{32}$
b) $\binom{4+28-1}{28}=\binom{31}{28}$
c) $\binom{4+8-1}{8}=\binom{11}{8}$
d) 1
e) Let $y_{i}=x_{i}+2,1 \leq i \leq 4$. The number of solutions to the given problem is then the same as the number of solutions to $y_{1}+y_{2}+y_{3}+y_{4}=40,0 \leq y_{i}$,
$1 \leq i \leq 4$. $\binom{4+40-1}{40}=\binom{43}{40}$.
f) $\quad\binom{4+28-1}{28}-\binom{4+3-1}{3}=\binom{31}{28}-\binom{6}{3}$,
where the term $\binom{6}{3}$ accounts for the solutions where $26 \leq x_{4}$.

Ex 1.4: (17)

a) $\binom{(512-1}{12}=\left({ }_{12}^{6}\right)$
b) 5^{12}

Ex 1.4: (24)

a) procedure Selection1 (i,j: nonnegative integers) begin
for $i:=0$ to 10 do
for $j:=0$ to $10-i$ do print ($i, j, 10-i-j)$
end
b) Let $y_{i}=x_{i}+2 \geq 0$. It's equal to solve $y_{1}+y_{2}+y_{3}+y_{4}=12$, where $y_{i} \geq 0$ for $1 \leq i \leq 4$. The algorithm is like (a).

Ex 1.4: (26)

* Each such composition can be factored as k times a composition of m.
* Consequently, there are 2^{m-1} compositions of n, where n $=m k$ and each summand in a composition is a multiple of k.

Ex 1.4: (28.a)

A string of this type consists of x_{1} 1's followed by $x_{2} 0$'s followed by x_{3} 1's followed by $x_{4} 0$'s followed by $x_{5} 1$'s followed by $x_{6} 0$'s, where, $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=\mathrm{n}, x_{1}, x_{6} \geq 0$, $x_{2}, x_{3}, x_{4}, x_{5}>0$.

The number of solutions to this equation equals the number of solutions to
$y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=n-4$, where $y_{i} \geq 0$ for $1 \leq i \leq 6$. This number is $\binom{6+(n-4)-1}{n-4}=\binom{n+1}{5}$.

Ex 1.4: (28.b)

For $\mathrm{n} \geq 6$, a string with this structure has $x_{1} 1$'s followed by $x_{2} 0$'s followed by $x_{3} 1$'s \ldots followed by $x_{8} 0$'s, where $x_{1}+x_{2}+\ldots+x_{8}=n, x_{1}, x_{8} \geq 0, x_{2}, \ldots, x_{7}>0$

The number of solutions to this equation equals the number of solutions to $y_{1}+y_{2}+\ldots+y_{8}=n-6$, where $y_{i} \geq 0$ for $1 \leq i \leq 8$. This number is $\binom{8+(n-6)-1}{n-6}=\binom{n+1}{7}$.

Ex 1.4: (28.c) $)_{1 / 2}$

(c) There are 2^{n} strings in total and $n+1$ strings where there are k 1's followed by $n-k$ 0 's, for $k=0,1,2, \ldots, n$. These $n+1$ strings contain no occurrences of 01 , so there are $2^{n}-(n+1)=2^{n}-\binom{n+1}{1}$ strings that contain at least one occurrence of 01. There are $\binom{n+1}{3}$ strings that contain (exactly) one occurrence of 01, $\binom{n+1}{5}$ strings with (exactly) two occurrences, $\binom{n+1}{7}$ strings with (exactly) three occurrences, ... , and for
(i) n odd, we can have at most $\frac{n-1}{2}$ occurrences of 01 . The number of strings with $\frac{n-1}{2}$ occurrences of 01 is the number of integer solutions for

$$
x_{1}+x_{2}+\cdots+x_{n+1}=n, x_{1}, x_{n+1} \geq 0, \quad x_{2}, x_{3}, \ldots, x_{n}>0
$$

This is the same as the number of integer solutions for

$$
y_{1}+y_{2}+\cdots+y_{n+1}=n-(n-1)=1, \text { where } y_{1}, y_{2}, \ldots, y_{n+1} \geq 0
$$

This number is $\binom{(n+1)+1-1}{1}=\binom{n+1}{1}=\binom{n+1}{n}=\binom{n+1}{2\left(\frac{n-1}{2}\right)+1}$.

Ex 1.4: (28.c $)_{2 / 2}$

(ii) n even, we can have at most $\frac{n}{2}$ occurrences of 01 . The number of strings with $\frac{n}{2}$ occurrences of 01 is the number of integer solutions for

$$
x_{1}+x_{2}+\cdots+x_{n+2}=n, x_{1}, x_{n+2} \geq 0, \quad x_{2}, x_{3}, \ldots, x_{n}>0
$$

This is the same as the number of integer solutions for

$$
y_{1}+y_{2}+\cdots+y_{n+2}=n-n=0, \text { where } y_{i} \geq 0 \text { for } 1 \leq i \leq n+2
$$

This number is $\binom{(n+2)+0-1}{0}=\binom{n+1}{0}=\binom{n+1}{n+1}=\binom{n+1}{2\left(\frac{n}{2}\right)+1}$.
Consequently,

$$
2^{n}-\binom{n+1}{1}=\binom{n+1}{3}+\binom{n+1}{5}+\cdots+ \begin{cases}\left(\begin{array}{c}
n+1 \\
m \\
n+1 \\
n+1
\end{array}\right), & n \text { odd } \\
n \text { even }\end{cases}
$$

and the result follows.

