Name:

Student ID:

Quiz #6 6%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

This is a closed book test. Any academic dishonesty will automatically lead to zero point. If the total points are more than 6 points, you will get at most 6 points out of it.

- 1) (2%) For $\Sigma = \{0, 1\}$ determine whether the string 00010 is in each of the following languages (taken from Σ^*).
 - a) $\{000, 101\}\{10, 11\}$
 - b) $\{00\} \{0\}^* \{10\}$
 - c) $\{000\}^* \{1\}^* \{0\}$
 - d) $\{00\}^*\{10\}^*$

Answer:

- a) Yes
- b) Yes
- c) Yes
- d) No

2) (2%) Consider the finite state machine M = (S, I, O, ν, ω), where S = {s₀, s₁, s₂}, I = O = {0,1}, and ν, ω are given by the state table below. Find the output for each of the following input strings x ∈ I*, and determine the last state in the transition process. (Assume that we always start at s₀.)

- a) x = 1010101
- b) x = 1001001
- c) x = 101001000
- d) x = 00100111

Answer:

a) 0010101;*s*₁

	ν		ω	
	0	1	0	1
s_0	s_0	s_1	0	0
s_1	s_2	s_1	0	0
s_2	s_0	s_1	0	1

- b) 0000000;*s*₁
- c) 00100000;*s*₀
- d) 0000000;*s*₁
- 3) (2%) For 𝒴 = 𝒴 = {0,1} a string x ∈ 𝒴* is said to have *even parity* if it contains an even number of 1's. Construct a state diagram for a finite state machine that recognizes all nonempty strings of even parity. (Assume that we always start at s₀.)

Answer:

- 4) (2%) For $\Sigma = \{0, 1\}$ describe the strings in A^* for each of the following language $A \subseteq \Sigma^*$
 - a) {01}
 - b) {000}
 - c) {0,010}
 - d) $\{1, 10\}$

Answer:

- a) Here A^* consist of all strings x of even length where if $x \neq \lambda$ then x starts with 0 and ends with 1, and the symbols (0 and 1) alternate.
- b) In this case A^* contains strings made up of 3n 0's for $n \in N$
- c) Here a string x ∈ A* if and only if
 1) x is a string of n 0's for n ∈ N; or

2) x is a string that starts and ends with 0, and it has at least one 1 but without consecutive 1's. There are at least two consecutive 0's between two 1.

- d) For this case A^* consist of the following:
 - 1) Any string of n 1's for $n \in N$; and
 - 2) Any string that starts with 1 and contain at least one 0 without consecutive 0's.