Name: Student ID:

Quiz \#2 6\%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu
Department of Computing Science, National Tsing Hua University, Taiwan
This is a closed book test. Any academic dishonesty will automatically lead to zero point.

1) (1%) Give the reasons for each step in the following simplifications of compound statements.
a) $(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q)] \Leftrightarrow \neg(q \vee p)$

Answer:
$(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q)]$
$\Leftrightarrow(p \rightarrow q) \wedge \neg q \quad$ reason: Absorption Law (and the Commutative Law of \vee)
$\Leftrightarrow(\neg p \vee q) \wedge \neg q \quad$ reason: $p \rightarrow q \Leftrightarrow \neg p \vee q$
$\Leftrightarrow \neg q \wedge(\neg p \vee q) \quad$ reason: Commutative Law of \wedge
$\Leftrightarrow(\neg q \wedge \neg p) \vee(\neg q \wedge q) \quad$ reason: Distributive Law of \wedge over \vee
$\Leftrightarrow(\neg q \wedge \neg p) \vee F_{0} \quad$ reason: Inverse Law
$\Leftrightarrow \neg q \wedge \neg p \quad$ reason: Identity Law
$\Leftrightarrow \neg(q \vee p) \quad$ reason: DeMorgan's Laws
2) (1%) Given the reasons(s) for each step needed to show that the following arguments is valid.
$[p \wedge(p \rightarrow q) \wedge(s \vee r) \wedge(r \rightarrow \neg q)] \rightarrow(s \vee t)$
Answer:
Steps

1) $p \quad$ reason: premise
2) $p \rightarrow q \quad$ reason: premise
3) $q \quad$ reason: 1), 2) and the Rule of Detachment
4) $r \rightarrow \neg q$
5) $q \rightarrow \neg r$
6) $\neg r$
7) $s \vee r$
8) s
9) $\therefore s \vee t$
reason: premise
reason: 4) and $(r \rightarrow \neg q) \Leftrightarrow(\neg \neg q \rightarrow \neg r) \Leftrightarrow(q \rightarrow \neg r)$
reason: 3), 5) and the Rule of Detachment reason: premise
reason: 6), 7) and the Rule of Disjunctive Syllogism
reason: 8) and the Rule of Disjunctive Amplification
10) (1%) Use truth tables to verify that each of the following is a logical implication
a) $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
b) $[(p \vee q) \wedge \neg p] \rightarrow q$

Answer:

TABLE I
(A)

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	1	0	1
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

TABLE II
(B)

p	q	$\neg p$	$p \vee q$	$(p \vee q) \wedge \neg p$	$[(p \vee q) \wedge \neg p] \rightarrow q$
0	0	1	0	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	1	0	1	0	1

4) (2\%) Let $p(x), q(x)$ andr (x) denote the following open statements.
$p(x): x^{2}-8 x+15=0$
$q(x): x$ is odd
For the universe of all integers, determine the truth or falsity of each of the following statements. If a statement is false, give a counterexample.
a) $\forall x[q(x) \rightarrow p(x)]$
b) $\exists x[q(x) \rightarrow p(x)]$
c) $\forall x[p(x) \rightarrow q(x)]$
d) $\exists x[p(x) \rightarrow q(x)]$

Answer:
a) False, For $x=1, q(x)$ is true while $p(x)$ is false.
b) True
c) True
d) True
5) (1%) Let n be an integer. Prove that n is odd if and only if $7 n+8$ is odd.

Answer:
If n is odd, then $n=2 k+1$ for some (particular) integer k.
Then $7 n+8=7(2 k+1)+8=14 k+15=14 k+14+1=2(7 k+7)+1$, so it follows from Definition 2.8 that $7 n+8$ is odd.

Conversely, suppose that n is not odd. Then n is even, so $n=2 t$ for some (particular) integer t.
But then $7 n+8=7(2 t)+8=14 t+8=2(7 t+4)$, so it follows from Definition 2.8 that $7 n+8$ is even - that is, $7 n+8$ is not odd. Consequently, the converse follows by contraposition.

Definition 2.8 : Let n be an integer. We call n even if n is divisible by 2 - that is if there exists an integer r so that $n=2 r$. If n is not even, then we call n odd and find for this case that there exists an integer s where $n=2 s+1$

