Name:

Student ID:

Quiz #2 6%

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan This is a closed book test. Any academic dishonesty will automatically lead to zero point.

(1%) Give the reasons for each step in the following simplifications of compound statements.

a)
$$(p \to q) \land [\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$$

Answer:

$$\begin{array}{ll} (p \rightarrow q) \wedge [\neg q \wedge (r \lor \neg q)] \\ \Leftrightarrow (p \rightarrow q) \wedge \neg q & reason: \ Absorption \ Law \ (and \ the \ Commutative \ Law \ of \lor) \\ \Leftrightarrow (\neg p \lor q) \wedge \neg q & reason: \ p \rightarrow q \Leftrightarrow \neg p \lor q \\ \Leftrightarrow \neg q \wedge (\neg p \lor q) & reason: \ Commutative \ Law \ of \land \\ \Leftrightarrow (\neg q \wedge \neg p) \lor (\neg q \wedge q) & reason: \ Distributive \ Law \ of \land \ over \lor \\ \Leftrightarrow (\neg q \wedge \neg p) \lor F_0 & reason: \ Inverse \ Law \\ \Leftrightarrow \neg q \wedge \neg p & reason: \ Identity \ Law \\ \Leftrightarrow \neg (q \lor p) & reason: \ DeMorgan's \ Laws \end{array}$$

2) (1%) Given the reasons(s) for each step needed to show that the following arguments is valid.

$$[p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \neg q)] \rightarrow (s \lor t)$$
Answer:
Steps
1) p
reason: premise
2) $p \rightarrow q$
reason: premise
3) q
reason: 1), 2) and the Rule of Detachment

4) $r \to \neg q$	reason: premise
5) $q \to \neg r$	reason: 4) and $(r \to \neg q) \Leftrightarrow (\neg \neg q \to \neg r) \Leftrightarrow (q \to \neg r)$
6) $\neg r$	reason: 3), 5) and the Rule of Detachment
7) $s \lor r$	reason: premise
8) <i>s</i>	reason: 6), 7) and the Rule of Disjunctive Syllogism
9) $\therefore s \lor t$	reason: 8) and the Rule of Disjunctive Amplification

3) (1%) Use truth tables to verify that each of the following is a logical implication

a)
$$[(p \to q) \land (q \to r)] \to (p \to r)$$

b)
$$[(p \lor q) \land \neg p] \to q$$

Answer:

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	1	0	1
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

TABLE I
(A)

(B)								
p	q	$\neg p$	$p \lor q$	$(p \lor q) \land \neg p$	$[(p \lor q) \land \neg p] \to q$			
0	0	1	0	0	1			
0	1	1	1	1	1			
1	0	0	1	0	1			
1	1	0	1	0	1			

4) (2%) Let p(x), q(x) and r(x) denote the following open statements.

 $p(x): x^2 - 8x + 15 = 0$

q(x): x is odd

For the universe of all integers, determine the truth or falsity of each of the following statements. If a statement is false, give a counterexample.

- a) $\forall x[q(x) \rightarrow p(x)]$
- b) $\exists x[q(x) \rightarrow p(x)]$
- c) $\forall x[p(x) \rightarrow q(x)]$
- d) $\exists x[p(x) \rightarrow q(x)]$

Answer:

- a) False, For x = 1, q(x) is true while p(x) is false.
- b) True
- c) True
- d) True

TABLE II

5) (1%) Let n be an integer. Prove that n is odd if and only if 7n + 8 is odd.

Answer:

If n is odd, then n = 2k + 1 for some (particular) integer k. Then 7n + 8 = 7(2k + 1) + 8 = 14k + 15 = 14k + 14 + 1 = 2(7k + 7) + 1, so it follows from Definition 2.8 that 7n + 8 is odd. Conversely, suppose that n is not odd. Then n is even, so n = 2t for some (particular) integer t. But then 7n + 8 = 7(2t) + 8 = 14t + 8 = 2(7t + 4), so it follows from Definition 2.8 that 7n + 8 is even – that is, 7n + 8 is not odd. Consequently, the converse follows by contraposition.

Definition 2.8 : Let n be an integer. We call n even if n is divisible by 2 – that is if there exists an integer r so that n = 2r. If n is not even, then we call n odd and find for this case that there exists an integer s where n = 2s + 1