SOLUTION

§ Exercise 6.1: 1, 3, 4, 7, 14
§ Exercise 6.2: 3, 5, 6, 8, 9
§ Exercise 6.3: 1, 2, 5, 7

Ex. 6.1-1

a) $25 ; 125$
b) $\sum_{i=0}^{5} 5^{i}=3906$

Ex. 6.1-3

12

Ex. 6.1-4

a) 0
b) 0
c) 1
d) 2
e) 3
f) 4
g) 1
h) 0

Ex. 6.1-7

a) $\{00,11,000,111,0000,1111\}$
b) $\{0,1\}$
c) $\sum^{*}-\{\lambda, 00,11,000$,
d) $\{0,1,00,11\}$
${ }^{\text {o) }} \Sigma$

f) $\quad \sum^{*}-\{0,1,00,11\}=\{\lambda, 01,10\} \cup\{w \mid\|w\| \geq 3\}$

Ex. 6.1-14

There are five possible choices
(1) $A=\{\lambda\}, B=\{01,000,0101,0111,01000,010111\}$;
(2) $A=\{01,000,0101,0111,01000,010111\}, B=\{\lambda\}$;
(3) $A=\{0\}, B=\{1,00,101,111,1000,10111\}$;
(4) $A=\{0,010\}, B=\{1,00,111\}$;
(5) $A=\{\lambda, 01\}, B=\{01,000,0111\}$;

Ex. 6.2-3

a) 010110
b)

Ex. 6.2-5

a) $010000 ; \mathrm{s}_{2}$
b) $\left(s_{1}\right) 100000 ; s_{2} \quad\left(s_{2}\right) 000000 ; s_{2} \quad\left(s_{3}\right) 110010 ; s_{2}$
c)

	v		w	
	0	1	0	1
s_{0}	s_{0}	s_{1}	0	0
s_{1}	s_{1}	s_{2}	1	1
s_{2}	s_{2}	s_{2}	0	0
s_{3}	s_{0}	s_{3}	0	1
s_{4}	s_{2}	s_{3}	0	1

Ex. 6.2-6

a) The machine recognizes (with an output of 1) every 0 (in an input string x) that is proceed by another 0
b) State s_{1} remembers that at least one 0 has been supplied from an input string x
c) $A=\{1\}^{*}, b=\{00\}$

Ex. 6.2-8

a) | Input | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Output | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |

b)

	v		w	
	0	1	0	0
s_{0}	s_{0}	s_{1}	0	0
s_{1}	s_{1}	s_{2}	0	0
s_{2}	s_{2}	s_{3}	0	0
s_{3}	s_{3}	s_{4}	0	0
s_{4}	s_{4}	s_{5}	0	0
s_{5}	s_{5}	s_{6}	0	1

Ex. 6.2-8

c) $w\left(x, s_{0}\right)=0000001$ for $x=$

1) 1111101
2) 1111011
3) 1110111
4) 1101111
5) 1011111
6) 0111111
d) The machine recognizes the occurrence of a sixth 1, a $12^{\text {th }} 1$ in an input x

Ex. 6.2-9

a)

	\mathbf{v}		\mathbf{w}	
	0	1	0	0
s_{0}	s_{4}	s_{1}	0	0
s_{1}	s_{3}	s_{2}	0	0
s_{2}	s_{3}	s_{2}	0	1
s_{3}	s_{3}	s_{3}	0	0
s_{4}	s_{5}	s_{3}	0	0
s_{5}	s_{5}	s_{3}	1	0

b) There are only two possibilities : $x=1111$ or $x=0000$
c) $A=\{111\}\{1\}^{*} \cup\{000\}\{0\}^{*}$
d) $A=\{11111\}\{1\}^{*} \cup\{00000\}\{0\}^{*}$

Ex. 6.3-1

a)

Ex. 6.3-2

a) (0110)

b) (1010)

Ex. 6.3-5

a)

b)

1) Input 111, output 011
2) Input 1010, output 0101
3) Input 00011, output 00001
c) The machine outputs a 0 followed by the first n-1 symbols of the n symbol input string x. Hence the machine is a unit delay.
d) The machine here performs the same tasks as the one in Fig. 6.13 and has only two states

Ex. 6.3-7

a) The transient states are $\mathrm{s}_{0}, \mathrm{~s}_{2}$ State s_{4} is a sink state. $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}\right\},\left\{\mathrm{s}_{4}\right\},\left\{\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{5}\right\}$ (with the corresponding restrictions on the given function v) constitute submachines. The strongly connected submachines are $\left\{\mathrm{s}_{4}\right\},\left\{\mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{5}\right\}$
b) States $\mathrm{s}_{2}, \mathrm{~s}_{3}$ are transient. The only sink state is s_{4}. The set $\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{3}, \mathrm{~s}_{4}\right\}$ provides the states for a submachine; $\left\{\mathrm{s}_{4}\right\},\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}\right\}$ provide strongly connected submachines
c) Here is no transient state. State s_{6} is a sink state. There are three submachines: $\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}, \mathrm{~s}_{6}\right\},\left\{\mathrm{s}_{6}\right\}$, and $\left\{\mathrm{s}_{3}, \mathrm{~s}_{4}, \mathrm{~s}_{5}, \mathrm{~s}_{6}\right\}$. The strongly connected submachine is $\left\{\mathrm{s}_{6}\right\}$

