Name: Student ID:

Quiz \#2 (5\% + 1\% Bonus)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu
Department of Computing Science, National Tsing Hua University, Taiwan 3:30-3:50 p.m., March 17th, 2014

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

1) (2\%) For primitive statements p, q :
a) Verify that $p \rightarrow[q \rightarrow(p \wedge q)]$ is a tautology.
b) Verify that $(p \vee q) \rightarrow[q \rightarrow q]$ is a tautology by using the results from part (a) along with the substitution rules and the laws of logic.
c) Is $(p \vee q) \rightarrow[q \rightarrow(p \wedge q)]$ a tautology?

Solution:

| p | q | $p \wedge q$ | $q \rightarrow(p \wedge q)$ | $p \rightarrow[q \rightarrow(p \wedge q)]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 |
| (a)0 1 | 0 | 0 | 1 | |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |

$\Rightarrow p \rightarrow[q \rightarrow(p \wedge q)]$ is a tautology
(b)

Replacing p to $(p \vee q)$ in (a)
$\Rightarrow(p \vee q) \rightarrow[q \rightarrow((p \vee q) \wedge q)]$ (the substitution rules)
$\Rightarrow(p \vee q) \rightarrow[q \rightarrow q]$ (the absorption law)
$\Rightarrow p \rightarrow[q \rightarrow(p \wedge q)] \Leftrightarrow(p \vee q) \rightarrow[q \rightarrow q]$ is a tautology.
(c)

p	q	$p \wedge q$	$p \vee q$	$q \rightarrow(p \wedge q)$	$(p \vee q) \rightarrow[q \rightarrow(p \wedge q)]$
0	0	0	0	1	1
0	1	1	0	0	0
1	0	1	0	1	1
1	1	1	1	1	1

$\Rightarrow(p \vee q) \rightarrow[q \rightarrow(p \wedge q)]$ is not a tautology
2) (2\%) Let $p(x, y): x^{2} \geq y$ and $q(x, y): x+2>y$ be two open statements. Consider a universe of all real numbers, determine the truth value for each of the following statements.
a) $q(1, \pi)$
b) $p(-3,8) \wedge q(1,3)$
c) $p(1,2) \leftrightarrow \neg q(1,2)$
d) $p(2,2) \rightarrow q(1,1)$

Solution:

(a) False, $1+2>\pi$
(b) False, $((3) 2 \geq 8) \wedge(1+2>3)=($ True \wedge False $)$
(c) True, $((122) \leftrightarrow \neg(1+22))=($ False \leftrightarrow False $)$
(d) True, $((222) \rightarrow(1+2>1))=($ True \rightarrow True $)$
3) (2\%) Let n be an integer. Prove that n is even if and only if $29 n+14$ is even.

Solution:
If n is even, then $n=2 k$ for some (particular) integer k. Then $29 n+14=29(2 k)+14=$ $2(29 k+7)$, so it follows from Definition 2.8 that $29 n+14$ is even. Conversely, suppose that n is not even. Then n is odd, so $n=2 t+1$ for some (particular) integer t. Therefore, $29 n+14=29(2 t+1)+14=2(29 t+21)+1$, so from Definition 2.8 we have $29 n+14$ odd hence, not even. Consequently, the converse follows by contraposition.

