Name:

Student ID:

1

Quiz #2 (5% + 1% Bonus)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

3:30 - 3:50 p.m., March 17th, 2014

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

1) (2%) For primitive statements p, q:

- a) Verify that $p \to [q \to (p \land q)]$ is a tautology.
- b) Verify that (p ∨ q) → [q → q] is a tautology by using the results from part (a) along with the substitution rules and the laws of logic.
- c) Is $(p \lor q) \to [q \to (p \land q)]$ a tautology?

Solution:

	p	q	$p \wedge q$	$q \to (p \land q)$	$p \to [q \to (p \land q)]$
	0	0	0	1	1
(a)	0	1	0	0	1
	1	0	0	1	1
	1	1	1	1	1

 $\Rightarrow p \rightarrow [q \rightarrow (p \wedge q)]$ is a tautology

(b)

Replacing p to $(p \lor q)$ in (a) $\Rightarrow (p \lor q) \rightarrow [q \rightarrow ((p \lor q) \land q)]$ (the substitution rules) $\Rightarrow (p \lor q) \rightarrow [q \rightarrow q]$ (the absorption law) $\Rightarrow p \rightarrow [q \rightarrow (p \land q)] \Leftrightarrow (p \lor q) \rightarrow [q \rightarrow q]$ is a tautology.

(c)

p	q	$p \wedge q$	$p \vee q$	$q \to (p \land q)$	$(p \lor q) \to [q \to (p \land q)]$
0	0	0	0	1	1
0	1	1	0	0	0
1	0	1	0	1	1
1	1	1	1	1	1

 $\Rightarrow (p \lor q) \to [q \to (p \land q)]$ is not a tautology

- 2) (2%) Let $p(x,y) : x^2 \ge y$ and q(x,y) : x + 2 > y be two open statements. Consider a universe of all real numbers, determine the truth value for each of the following statements.
 - a) $q(1,\pi)$
 - b) $p(-3,8) \land q(1,3)$
 - c) $p(1,2) \leftrightarrow \neg q(1,2)$
 - d) $p(2,2) \to q(1,1)$

Solution:

- (a) False, $1 + 2 > \pi$
- (b) False, $((3)2 \ge 8) \land (1+2>3) = (True \land False)$
- (c) True, $((122) \leftrightarrow \neg (1+22)) = (False \leftrightarrow False)$
- (d) True, $((222) \to (1+2>1)) = (True \to True)$

3) (2%) Let n be an integer. Prove that n is even if and only if 29n + 14 is even.

Solution:

If n is even, then n = 2k for some (particular) integer k. Then 29n + 14 = 29(2k) + 14 = 2(29k + 7), so it follows from Definition 2.8 that 29n + 14 is even. Conversely, suppose that n is not even. Then n is odd, so n = 2t + 1 for some (particular) integer t. Therefore, 29n + 14 = 29(2t + 1) + 14 = 2(29t + 21) + 1, so from Definition 2.8 we have 29n + 14 odd hence, not even. Consequently, the converse follows by contraposition.